Programme de colle n°28 Semaine du 9 au 15 juin

MPSI2

Mathématiques

DÉTERMINANT

- Groupe symétrique.
 - Cardinal, transpositions, cycles.
 - Toute permutation est un produit de transpositions.
 - Signature d'une permutation. La signature est un morphisme de groupes.
 - Groupe alterné.
- Formes n-linéaires alternées.
 - Définitions.
 - Une forme n-linéaire alternée est antisymétrique.
 - Expression d'une forme n-linéaire alternée sur un espace de dimension n dans une base.
 - L'ensemble des formes n-linéaires alternées est une droite vectorielle.
 - Si φ est une forme n-linéaire alternée non nulle, alors (x_1, \ldots, x_n) est une base si et seulement si, $\varphi(x_1, \ldots, x_n) \neq 0$.
- Déterminant dans une base.
 - Caractérisation des bases.
 - Formule de changement de base.
- Déterminant d'un endomorphisme.
 - Définition
 - Propriétés élémentaires.
 - f est un automorphisme si, et seulement si det $(f) \neq 0$. Déterminant de f^{-1} .
- Déterminant d'une matrice.carrée.
 - Définition. Formule explicite.
 - Lien entre le déterminant d'une famille de vecteurs et d'un endomorphisme et celui des matrices associées.
 - Propriétés élémentaires.
 - A est inversible si, et seulement si, $\det(A) \neq 0$. Déterminant de A^{-1} .
 - Déterminant de la transposée.
 - Déterminant d'une matrice 2×2 .
 - Déterminant d'une matrice triangulaire supérieure.
 - Calculs par bloc.
 - Opérations élémentaires sur les lignes et les colonnes d'un déterminant.
 - Déterminant de Vandermonde.
 - Mineurs et Cofacteurs. Développement selon une ligne ou une colonne.
 - Comatrice. Com $(A)^{\mathsf{T}} A = A \operatorname{Com} (A)^{\mathsf{T}} = \det (A) I_n$.
- Formules de Cramer.

Cours

- expression d'une forme n-linéaire alternée dans une base;
- déterminant d'une matrice triangulaire supérieure;
- déterminant de la transposée;
- déterminant de Vandermonde;
- Si $A \in \mathcal{M}_n(\mathbb{Z}) \cap \operatorname{GL}_n(\mathbb{R})$, alors $A^{-1} \in \mathcal{M}_n(\mathbb{Z}) \iff \det(A) = \pm 1$.